Combination of BK channel opener and Kv4 channel inhibitor for treatment of cerebellar ataxia in mutant med mice.

نویسندگان

  • Samira Abbasi
  • Ataollah Abbasi
  • Yashar Sarbaz
چکیده

To the Editor: Purkinje cells constitute the sole output of the cerebellar cortex. They play pivotal roles in maintaining balance and regulating movement by modulating the firing response of the deep cerebellar nuclei. Electrophysiological dysfunction of Purkinje cells brings about cerebellar ataxia. Accordingly, rescue of Purkinje cells could have important therapeutic implications. In spite of major progress in detecting the genetic and molecular mechanisms of ataxia, proven pharmacological treatment of cerebellar ataxia is still lacking. Therefore, the major challenges for future research are the recognition of new drug targets. As a result of the diversity of ataxias, symptomatic therapeutic approaches that modify ataxia without interfering with underlying molecular mechanism must be seriously considered. There is an obvious medical need to develop anti-ataxic drugs with confirmed efficacy. With the discovery of ion channelopathies, the therapeutic value of many basic drugs targeting ion channels has been confirmed. A growing body of evidence indicates that potassium channel-blockers and openers may exert an important neuroprotective effect in different diseases of central nervous system. Purkinje cells in mutant med mice who lack expression of the Scn8a gene, which encodes the NaV1.6 protein, have shown a decrease in the rate of spontaneous action-potential firing. Thus, these mice are ataxic. Restoring the Purkinje cell output to the normal condition can reduce ataxia in mutant med mice. We propose that BK channel activators and Kv4 channel inhibitors may restore the med Purkinje cell output to normal condition. Proposed drugs for this purpose are acetazolamide (ACTZ), a BK channel-opener, and 4-aminopyridine (4-AP), a Kv4 channel-inhibitor. To determine how the output of med Purkinje cells restore the normal conditions, computer simulations of the electrical behaviors of Purkinje cells can be performed. Computational models of cells have become important tools for investigating different aspects of the behavior of the cells. The simulation environment allows change the properties of the specific ion channels as the possible mechanism of action of neuroprotective drugs. This is a good way to imitate cell response in the presence of channel blockers and activators, without any concern about the blocker side effects or other uncontrollable parameters that may affect the results in the experiments. We propose that 4-AP and ACTZ or a combination of them can be an effective treatment to help reduction of ataxia in med mice, and this hypothesis can be tested in a simulation environment. Samira Abbasi, Ph.D. Student Ataollah Abbasi Computational Neuroscience Laboratory Dept. of Biomedical Engineering, Faculty of Electrical Engineering Sahand University of Technology Tabriz, Iran Computational Neuroscience Laboratory, Department of Biomedical engineering, Faculty of electrical engineering, Sahand University of Technology, Tabriz, Iran Yashar Sarbaz Dept. of Emerging Technology School of Engineering University of Tabriz Tabriz, Iran Correspondence, Prof. Abbasi; e-mail: [email protected], [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Introducing treatment strategy for cerebellar ataxia in mutant med mice: Combination of acetazolamide and 4-Aminopyridine

Purkinje neurons are the sole output neuron of the cerebellar cortex, and they generate high-frequency action potentials. Electrophysiological dysfunction of Purkinje neurons causes cerebellar ataxia. Mutant med mice have the lack of expression of the Scn8a gene. This gene encodes the NaV1.6 protein. In med Purkinje neurons, regular high-frequency firing is slowed, and med mice are ataxic. The ...

متن کامل

Contribution of Somatic and Dendritic SK Channels in the Firing Rate of Deep Cerebellar Nuclei: Implication in Cerebellar Ataxia

Introduction: Loss of inhibitory output from Purkinje cells leads to hyperexcitability of the Deep Cerebellar Nuclei (DCN), which results in cerebellar ataxia. Also, inhibition of small-conductancecalcium-activated potassium (SK) channel increases firing rate  f DCN, which could cause cerebellar ataxia. Therefore, SK channel activators can be effective in reducing the symptoms of this disease, ...

متن کامل

Cerebellar ataxia and Purkinje cell dysfunction caused by Ca2+-activated K+ channel deficiency.

Malfunctions of potassium channels are increasingly implicated as causes of neurological disorders. However, the functional roles of the large-conductance voltage- and Ca(2+)-activated K(+) channel (BK channel), a unique calcium, and voltage-activated potassium channel type have remained elusive. Here we report that mice lacking BK channels (BK(-/-)) show cerebellar dysfunction in the form of a...

متن کامل

The role of BK channels in antiseizure action of the CB1 receptor agonist ACEA in maximal electroshock and pentylenetetrazole models of seizure in mice

The anticonvulsant effect of cannabinoid compound has been shown in various models of seizure. On the other hand, there are controversial findings about the role of large conductance calcium-activated potassium (BK) channels in the pathogenesis of epilepsy. In this study, the effect of arachidonyl-2′-chloroethylamide (ACEA), a CB1 receptor agonist, and a BK channel antagonist, paxilline, either...

متن کامل

A mutation that causes ataxia shifts the voltage-dependence of the Scn8a sodium channel.

A mutation of alanine to threonine in the III S4-S5 linker of the mouse Scn8a sodium channel has previously been identified as causing the ataxia in med(jo) mice. The electrophysiological effects of this mutation in Scn8a sodium channels were characterized in Xenopus oocytes. The med(jo) mutation caused a 10 mV positive shift in the voltage dependence of activation, without any significant chan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuropsychiatry and clinical neurosciences

دوره 25 4  شماره 

صفحات  -

تاریخ انتشار 2013